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Microscopic-Based Fluid Flow Simulation of 
Invasion on a Two-Dimensional Lattice. 
II. Mobilization and Cohesion 

W. G. Wilson, ~ W. G. Laidlaw, 2 and D.  A. Coombe 3 

Received July 15. 1993 

An algorithm for modeling secondary invasion processes in porous media is 
presented. Mobilization of trapped defender fluid is accomplished through inter- 
facial interaction rules. Cohesive forces ate also included within the defender 
phase. A series of simulation runs are performed using two-dimensional lattices 
and examined to determine optimal conditions for secondary invasions that 
sweep the trapped defender phase from the porous medium. 

KEY WORDS: Random walk; porous media; fluid mobilization; secondary 
recovery. 

1. INTRODUCTION 

In this paper we extend previous algorithms designed to simulate fluid flow 
invasion in porous media (~ to the more general process of defender 
mobil izat ion with arbi trary defender-phase surface tension. This is not  a 
new problem t21 and has been attacked in diverse ways, ranging from 
numerical  solutions of hydrodynamic  equations on a discrete network (3-5~ 
to r andom walker approaches. ~61 All of these approaches are valid; 
however, we are drawn to the r andom walk algorithm due to its "coarse- 
grained" philosophy which replaces detailed calculations in an inherently 
stochastic process with "simple" stochastic rules, yet produces spatially and 
temporally rich solutions. The work we present here is inspired by the 
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work of Kadanoff on the evolution of an interface, t61 but we have modified 
the algorithm to incorporate two additional features: bulk motion in the 
invader phase through the explicit inclusion of invader fluctuations, and a 
reverse invasion, where the invader phase can be displaced (locally) by the 
actions of the defender phase. 

One caveat with the methodology presented here is that momentum is 
never conserved either explicitly or implicitly, setting the algorithm apart 
from the lattice-gas hydrodynamic approaches of Frisch e ta l .  (71 and 
Rothman and Keller. ts~ Consequently only systems obeying the diffusion 
equation, such as the Hele Shaw cell (9) and flow through porous media, ~2~ 
can be accurately represented. 

2. PROBLEMS 

In this section we discuss an algorithm for fluid flow through porous 
media (more generally, diffusive systems) that contain features of displace- 
ment, mobilization, trapping, and cohesion. In the first part mobilization 
rules will be explained in detail. Rules that govern cohesion are then dis- 
cussed as an extension of the mobilization rules. 

Our starting point is a previous work ~ where we described a 
microscopically based algorithm for fluid flow invasion by implementing 
two "species" of random walkers. The two species of walkers represented 
the two phases, invader and defender, and in turn could have different dif- 
fusivities (a different number of steps per unit simulation time). The inter- 
actions between the walkers at the interface of the phases were contained 
in "rules"; for example, the rule that governed displacement allowed the 
invader walkers to step onto unoccupied defender sites (displacing the 
defender phase), then continue as walkers in the invader phase. The resul- 
tant dynamics ranged from a stable displacement at favorable viscosity 
ratios (specified as the inverse diffusivity ratio) to viscous fingering at 
adverse viscosity ratios. Although we retain the notion of different species 
of walkers (with different diffusivities), the present algorithm undertakes 
rather significant modifications of the rules for interfacial interactions in 
order to improve invasion efficiency and to permit mobilization of 
bypassed defender fluid. 

2.1. Mobi l izat ion 

The goal is to mobilize defender fluid; for example, Fig. 1 shows a 
defender-phase blob imbedded in an invader-saturated network. During a 
given physical displacement process the defender will, at some time, move 
out of one pore (that pore immediately being filled with invader phase) 
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Fig. 1. Schematic diagram representing a trapped "blob" of defender fluid (in gray). The 
invader displaces defender and occupies a pore at x' and subsequently a displacement event 
occurs at x where defender displaces invader and occupies the pore. 

and, a short time later, move into another pore, marking the initial net dis- 
placement of the defender blob and the beginning of its mobilization as an 
intact blob. If the displacement process were repeated with an identical 
initial defender blob geometry, we argue that the inherent stochasticity of 
the process will likely result in several differences from the first run. These 
differences include the time at which the first pore is evacuated, the specific 
pore that is evacuated, the time at which the second pore is entered, and 
the specific pore that is entered by the blob. However, if many runs were 
performed, there would be a correlation between the location of a high- 
pressure gradient at the blob's surface and the location of the first 
evacuated pore. Thus there is an inherent stochasticity associated with 
every run which, when averaged over many experimental configurations, 
i.e., when an ensemble average is performed, would generate the expected 
results. 

The appendix contains the arguments, essentially those of Kadanoff, 
which give substance to the replacement of an ensemble of deterministic 
runs by the random walk. We will now discuss the rules representing this 
replacement. 

Consider a network with fixed boundary  pressures within which sits a 
defender blob. Invader walkers are launched, at the boundary,  with a 
probability controlled by the boundary  pressure. These walkers represent a 
pressure fluctuation originating from a point source and propagate with 
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d i f fus iv i ty  O i (i denotes invader). When an invader walker encounters the 
invader~lefender interface, the invader walk may be terminated and a 
defender walk commenced from that point. This event is, in the first 
instance, conditional on the availability of an empty site (i.e., not occupied 
by a walker) for a newly launched defender walker. If this condition is met, 
then, with a "forward probability" 4, the invader walk is terminated and a 
defender walker launched from the empty site, otherwise the invader walk 
continues in the invader phase. A successful defender walk initiation is 
accompanied by the replacement of the defender phase with invader phase 
in the site at which the invader walk terminated. The defender walk within 
the defender blob is continued with diffusivity Dd until the surface of the 
blob is reached (here d denotes defender). At this point the defender walk 
must be coupled to the pressure. High invader pressure is denoted by 
invader occupancy and hence, if the site adjacent to the surface is occupied 
(i.e., the local invader pressure is too great), the defender phase is deemed 
unable to push into the invader. The defender walk then continues, within 
the defender blob, until the interface is reached elsewhere, and deposition 
is tested again. When the defender walker encounters a boundary site 
which is not occupied by an invader walker (i.e., the local pressure is low) 
then, with a "backward probability" fl, the defender walker terminates and 
an invader walker is launched. A successful invader walk initiation is 
accompanied by the replacement of the invader phase with defender phase 
in the site at which the defender walk terminated. Although it is evident 
that the pressure at the source boundary effectively controls the overall 
mobilization, it is also clear that there is an inherent stochasticity in our 
rules that mimics the stochasticity in the experimental system and would 
agree with the formal calculation in the limit of many realizations. 

2.2. Cohes ion  

Cohesion acts to minimize the interfacial area, resulting in larger, 
rounder defender-phase regions during the mobilization process. The algo- 
rithm that incorporates cohesion is quite simple, given the mobilization 
algorithm. First, lattice sites are labeled according to a majority rule of the 
neighbor sites' occupancy. Each site (on a two-dimensional square lattice) 
has four nearest neighbors (nn) and four next nearest neighbors (nnn). 
A given site is labeled invader-favored if three or four of the nn are invader- 
phase-occupied. If only two nn sites are invader-occupied and a majority of 
the nnn sites are invader-occupied, the site is also labeled as "invader- 
favored." All other configurations are labeled as "defender-favored." This 
labeling is completely independent of the phase that presently occupies the 
site. Cohesion acts to remove defender phase from invader-favored sites 
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and subsequently place this fluid into sites that are defender-favored, but 
occupied by invader phase. To this end a surface walker (with the same 
diffusivity as the defender walker) is created, with a probability tr per 
unit time step, at an invader-favored but defender-occupied site. Upon 
creation of the surface walker the invader-favored site becomes invader- 
occupied. The surface walker's propagation terminates when it happens 
upon a defender-favored but invader-occupied site; at this point the site 
becomes defender-occupied and the surface walker is annihilated. 

The displacement of the surface walker propagates according to a 
Green's function, which, in turn, is solved by a random walk of "surface 
walkers" as discussed in the appendix. Thus the only difference between the 
surface tension algorithm and the mobilization algorithm are the sources 
and sinks of the random walkers. 

In summary, then, in the entire simulation there are three types of 
walkers. Invader walkers represent a pressure transient in the invader phase, 
defender walkers represent a pressure transient in the defender phase, and 
cohesive forces demand a third walker, the "surface walkers." 

Besides the diffusivity, fundamental to each walker, there are three 
parameters in the algorithm controlling the evolution of the defender- 
invader interface. The parameter ~ represents the probability of the 
"forward" process defined here as a process in which an invader walker at 
the interface enters a defender-filled pore. The parameter fl controls the 
"backward" process of defenders displacing invaders, and the final 
parameter a is the probability of surface tension-driven displacements. All 
of these are expressed as rates, or events per unit time step. The parameters 

and fl could depend on a variety of fluid and substrate properties, but we 
treat them as phenomenological, independent parameters. For example, if 
fl is set to zero, the implication is that the defender phase is never able to 
dislodge the invader phase from a pore. Likewise, if the surface tension 
parameter a is set to zero, there are no cohesive effects in the defender fluid. 
As we shall see, it is only for certain parameter combinations that displace- 
ment and efficient mobilization occur. 

3. R E S U L T S  

3.1.  P r i m a r y  I n v a s i o n s  

We will first consider the algorithm for primary invasions (i.e., a situa- 
tion where an invader enters a region initially fully occupied by defender 
fluid) with an adverse viscosity ratio, and we will examine how the various 
parameters affect the anticipated viscous fingering. To probe the effect of 
the surface parameter tr, runs at values of tr from zero to tr =0.8 were 
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carried out  with, in each case, the forward probabi l i ty  held at  ~b---0.4 and 
the backward  probabi l i ty  held at fl = 0.0. The effect of  the backward  prob-  
abil i ty was tested for values of fl = 0.0 from zero to fl = 0.1 while holding 
the forward pa ramete r  at  ~ = 0.4 and the surface pa ramete r  at  tr = 0.2. In 
all these cases the invader  to defender diffusivity rat io  was set to 10: 1. The 
runs were performed on a 128 x 128 square lat t ice with per iodic  boundar ies  
on the sides, with the source of invader  walkers main ta ined  at 50% 
occupancy and the sink held at  0 %  occupancy.  Whenever  defender or  
surface walkers touched the source or  sink they were removed ( 0 %  
occupancy) .  The general result (such as depicted in Fig. 3a) was, as the 
adverse viscosity rat io  would suggest, s t rongly fingered with about  3 5 %  
residual defender. The details  of the residual defender d is t r ibut ion did 
depend on the parameters  a and ft. Increasing the surface probabi l i ty  a 
increased the finger width,  whereas increasing fl, the defender phase 's  
abil i ty to displace the invader,  resulted in the shat ter ing of the fingers. 
Since adjust ing the values of a and fl a lone did not  mater ia l ly  affect the 
overall  mobi l izat ion,  the role of the forward probabi l i ty  ~b was also 
investigated. 

3.2. Blob M o b i l i z a t i o n  

We invest igated this quest ion using a system initialized with a single, 
rec tangular  defender "b lob"  imbedded  in an invader-sa tura ted  ne twork  
(such t rapped  blobs const i tute much of the 35% residual).  The results for 
four cases are i l lustrated in Fig. 2. The forward probabi l i ty  was set at 

Fig. 2. Blob mobilization for various parameter combinations. All runs are performed at an 
adverse diffusivity ratio of 10:1 and forward probability ~b=0.1. The backward (/3) and 
surface probabilities (a) are (a),8 = 0.05 and o = 0.01, (b)/~ = 0.05 and a = 1.0, (c),6' = 0.5 and 
a=0.01, and (d),O=0.5 and o= 1.0. 
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~b=0.1 with ( a ) /~=0 .05  and a = 0 . 0 1 ,  (b) f l=0 .05  and a =  1.0, (c) f l=0 .5  
and a = 0 . 0 1 ,  and ( d ) / 3 = 0 . 5  and a =  1.0. All runs were again performed at 
an adverse diffusivity ratio of 10: 1. All runs performed at low surface ten- 
sions result in a very shattered distribution of defender fluid that remains 
largely immobilized, while large values facilitate mobilization. Having the 
backward probability greater than the forward probability also promotes 
blob mobilization. 

The optimal parameter  values can be recognized as dependent, in part, 
on the invader and defender diffusivities. If a disconnected blob is to move 
downstream as a coherent entity, the leading edge must have the same 
speed as the trailing edge, otherwise the blob is unstable. The speed of the 
trailing edge is determined by the product  of the invader walker density w~, 
the invader diffusivity Di, the forward probability, and the defender hole 
density hd, or wiDic/)h d. Similarly, the speed of the leading edge is given by 
waDdflhi. Setting these speeds equal gives 

fl Di Wihd 

r Dd wdhi 

Fig. 3. Snapshots in time (units of K= 1000 simulation steps) of the secondary invasion 
process. The primary invasion [panel (a)] was performed with an adverse diffusivity ratio of 
10:1, ~b=0.4, 8=0.2, and a=0.2, giving a badly fingered displacement. A second invader 
phase, miscible with the first, and having ~b = 0.1, a = 1.0, and fl = 0.5, is brought to the source 
line and the secondary invasion commences. 
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Thus, the backward to forward parameter ratio is proportional to the 
invader to defender diffusivity ratio, in our case 10: 1. 

3.3. Secondary Invasions 

The ultimate goal of a secondary invasion is the mobilization of 
trapped fluid resulting from a less-than-optimal primary invasion (cf. 
Section 3.2). The result of such a less-than-optimal primary invasion is 
illustrated in Fig. 3a for a 128 x 200 lattice. This run was obtained for an 
adverse diff.usivity ratio of 10:1 (with ~b=0.4, fl=0.2, and a=0 .2)  and 
gives a badly fingered displacement. As a result, about 35 % of the defender 
(black) is still in place. The configuration of Fig. 3a is now taken as the 
starting configuration for a secondary invasion with a miscible second 
phase having ~=0.1,  a =  1.0, and fl=0.5 (the parameters used in Fig. 2d) 
placed at the source. Configurations after 1K, 25K, 50K, 100K, and 150K 
(K= 1000) time steps are shown in Figs. 3b-3f, respectively. As illustrated 
in Fig. 3b, after only 1000 time steps the secondary invader has swept 
through the entire network with significant coalescence of the defender 
fluid. After 25K time steps further coalescence has taken place, and after 
50K time steps large blobs of defender are moving downstream. After 150K 
time steps much of the defender has been mobilized and is in the process 
of being moved off the grid. 

Comparison of the first and last panels of Fig. 3 shows that these 
parameter values produce a very effective secondary flood. The increased 
cohesion is particularly crucial in producing these results. In addition, 
patience is required! For example, th e primary invasion required approxi- 
mately 4K time steps, while it takes roughly 200K time steps to remove the 
residual defender fluid. 

4. S U M M A R Y  

We have discussed an algorithm useful in the simulation of hydro- 
dynamic and other processes where momentum conservation is not 
applicable. Our motivation arises from flow through porous media, which 
includes such diverse applications as environmental remediation and 
enhanced oil recovery. Since momentum is not conserved, problems can be 
framed as solutions to Laplace's equation subject to the appropriate 
boundary conditions. Random walks behave according to Laplace's equa- 
tion, hence a connection between random walk algorithms and flow through 
porous media problems is attainable. The algorithm discussed here is based 
on using integral equations as propagators of pressure fluctuations, follow- 
ing the work of Kadanoff. ~61 We have extended Kadanoff's algorithm to 



Fluid Flow Simulat ion of invasion 1193 

incorporate two additional features: bulk motion in the invader phase 
through the explicit inclusion of invader fluctuations, and the incorpora- 
tion of reverse invasion, where the invader phase can be displaced (locally) 
by the actions of the defender phase. The algorithm presented here 
implements three random walkers, with three independent parameters that 
control interaction rates at the invader--defender interface. The three 
include invader, defender, and surface walkers. Invader fluid displacing 
defender fluid is controlled by the forward probability, the reverse is con- 
trolled by the backward probability, and defender cohesion is controlled by 
the surface probability. 

We have tested the simulation for .both primary and secondary inva- 
sion processes as well as blob mobilization. In the case of primary invasion, 
the algorithm produced the appropriate range of behavior from viscous 
fingering to stable displacement. However, in the case of high defender 
cohesion the fingers were thickened, being much less fractal in character, and 
in the case of high reverse invasion rates the fingers shattered drastically. 

When we applied the algorithm to blob mobilization, we observed that 
the best mobilization occurred with high surface probability. Otherwise the 
biob shattered rather drastically, resulting in little downstream movement. 
More importantly, we found that mobilization is enhanced when the 
forward to backward probability ratio is proportional to the invader to 
defender diffusivity ratio and is accompanied by a high surface cohesion 
parameter. 

We then performed a secondary invasion simulation using the optimal 
set of run parameters found in the blob mobilization tests and used the 
residual defender configuration from a primary invasion as a starting 
condition. Excellent recovery of the residual defender fluid was achieved, 
but at the expense of a very long flood time when compared with the 
primary invasion times. 

APPENDIX 

The usual model for flow of a bulk fluid is simply v = - V p  and for 
steady flow of incompressible fluids a Laplace equation for pressure, 
V2p(x) = 0, is also satisfied. Unfortunately neither equation need be true at 
a boundary andappropria te  statements are required for each situation. We 
are particularly interested in the displacement of an interface between two 
fluids due to the appearance of a pressure fluctuation at the surface. For 
example, a pressure fluctuation may result in an intrusion as shown at the 
point x' in Fig. I, with the blob distending, at some later time, into a pore 
at x. 
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Rather than solve Laplace's equation subject to the boundary condi- 
tions directly, we could instead solve Laplace's equation for the Green's 
function V2G(x, x ' ) =  6 ( x -  x'), where x ranges over the blob's interior and 
surface, whereas x'  only ranges over the surface (since there are no interior 
pressure sources). The Green's function describes the pressure at a point x 
due to a unit pressure source at the surface point x'. The net internal 
pressures due to the imposed external pressures on the blob are then c j~ 

P(x) = e | P(x ' )  OG(x, x') da' (A1) 
urface OFIr as 

Given the pressure everywhere on the blob's surface, the pressure 
everywhere inside the blob is obtainable if we can solve for the Green's 
function. 16) 

It is well known from examining the discrete version of Laplace's 
equation, 

G(x, y , t+ l)=�88 l, y , t ) + G ( x - l ,  y,t) 

+ G ( x , y + l , t ) + G ( x , y - l , t ) ]  (A2) 

which also governs the update of occupancy probabilities of a random 
walk, that a random walk solves Laplace's equation (~'~2~ for an arbitrary 
blob geometry. Equation (A2) can thus be used to solve for the pressure 
fields directly at steady state with the resultant pressure at each location 
being consistent with the applied boundary conditions and Laplace's 
equation. 

Alternatively, a unit occupancy probability could be placed at the 
surface point x' and Eq. (A2) solved for the value of the Green's function 
as a function of x, obtaining the final pressures using Eq. (AI). This is 
accomplished by a random walker through the following algorithm. Start 
a random walker at x'  and let it walk over the network. Whenever it steps 
on an interior site x, increment a counter for that site by one, and when- 
ever the walker steps onto a boundary site, terminate the walk and remove 
the walker. This latter condition enforces the boundary condition that the 
Green's function goes to zero at the boundary except at the point source. 
The occupancy counter for each site, after averaging over many walkers, is 
proportional to G(x, x'). Kadanoff argues that repeating this process for all 
surface sites x'  generates the entire Green's function. (6~ The pressures could 
then be calculated, using Eq. (AI), to redistribute small bits of the blob. 
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